Aromatic Acylations catalysed by Metal Oxides

By John O. Morley, Imperial Chemical Industries Limited, Organics Division, Grangemouth, Stirlingshire, Scotland FK3 8XG

Dimethylbenzophenones are obtained in high yield from reactions between benzoyl chloride and each of the three isomeric xylenes during 10 h at 150 °C in the presence of small amounts of iron(III) oxide, zinc oxide, ammonium molybdate, tin(II) oxide, molybdenum(VI) oxide, or sodium tungstate. Oxides of titanium, aluminium, chromium, manganese, vanadium, thorium, copper, zirconium, tungsten, and ammonium vanadate are ineffective under these conditions. The benzoylation of 1,4-xylene also occurs in the presence of iron, iron(III) sulphate, iron(III) oxide catalyses the benzoylation of anisole, alkylbenzenes, and halogenobenzenes to give the appropriate 4-substituted benzophenones in high yield. 1,3-Xylene undergoes acylation and sulphonylation with reagents such as chloroacetyl chloride and benzenesulphonyl chloride, respectively, in the presence of ammonium molybdate to give the appropriate acetophenone or aromatic sulphone. The relative rates of the reaction between benzoyl chloride and 1,4-xylene in the presence of most of the catalysts mentioned have been assessed by estimating the amount of hydrogen chloride evolved.

CONSIDERABLE attention has been focused on the synthesis of aromatic ketones from Friedel–Crafts reactions between acyl halides and a variety of aromatic substrates in the presence of at least 1 mol. equiv. of a Lewis acid such as aluminium chloride.¹ Reactions of this type, especially between benzoyl chloride and reactive substrates such as aryl ethers and polycyclic arenes, also proceed readily in the presence of small amounts of catalysts such as metals, metal chlorides, and 10 h with an excess of the substrate and up to 20 mmol. equiv. of the appropriate metal oxide. The products were isolated by vacuum distillation, purified by either redistillation or recrystallisation, and identified by a combination of mass spectrometry, ¹H n.m.r. spectroscopy, and elemental analysis. Initially, an examination of the benzoylation of each of the three isomeric xylenes (1.5 mol) with benzoyl chloride (1.0 mol) showed that the appropriate dimethylbenzophenone is produced

TABLE 1

Preparation of dimethylbenzophenones from reactions between benzoyl chloride (140 g, 1 mol) and xylene (159 g, 1.5 mol) at 150 °C for 10 h catalysed by metal oxides

		Conversion		
Substrate	Catalyst ^a	(%) ^b	Benzophenone	Yield (g; %) °
1,2-Xylene	ZnO	100	3,4-Me ₂ (I)	185; 88.0 d
•	Fe_2O_3	100		185: 88.0
	Na_2WO_4	52		92; 84.2
	SnÖ	100		172.8; 81.8
1,3-Xylene	ZnO	100	2,4-Me, (II)	191.3: 91.0
	$Fe_{2}O_{3}$	100	200	186.6; 88.7
	$(NH_4)_6 Mo_7 O_{24}, 4H_2 O$	100		193.4; 92.0
	ŠnO	100		191.4; 91.0
	Na_2WO_4	41		72.7: 85.6
1,4-Xylene	Fe ₂ O ₃	100	2,5-Me ₂ (III)	176.2; 83.8
	MoO ₃	98		181.7; 88.2
	SnO	66		116.3; 83.8
	ZnO	100		176.5: 83.9 *
	ZnO	100		198.5; 94.5
	ZnO	100		$202.7: 96.5^{j}$

^a Quantities used were as follows: ZnO (2.0 g, 25 mmol); Fe₂O₃ (1.60 g, 10 mmol); Na₂WO₄ (5.88 g, 20 mmol); SnO (2.69 g, 20 mmol); (NH₄)₆Mo₇O₂₄·4H₂O (3.55 g, 3.0 mmol); MoO₃ (2.88 g, 20 mmol). ^bOf benzoyl chloride. ^c Based on benzoyl chloride consumed. ^d Ref. 3. ^e 1,4-Xylene (105 g, 1 mol) used. ^f 1,4-Xylene (318 g, 3 mol) used.

iodine, to give the appropriate benzoylated products in high yield.²

An investigation is reported here of the activities and synthetic utility of a number of metal oxides in Friedel-Crafts reactions of the type described above. Metal oxides are particularly useful as catalysts in this respect since they are readily available, inexpensive, generally non-corrosive, and non-hygroscopic. It has been shown that zinc oxide catalyses the benzoylation of 1,2-xylene to give 3,4-dimethylbenzophenone in high yield,³ but the activities of other metal oxides in aromatic acylation have not been explored.

The aromatic acylations were carried out at 150 °C for

¹ See, for example, P. H. Gore, 'Friedel-Crafts and Related Reactions,' ed. G. A. Olah, Interscience, New York, 1964, vol. 3, part 1, pp. 1-382, and references cited therein. in high yield in the presence of zinc oxide, iron(III) oxide, sodium tungstate, tin(II) oxide, ammonium molybdate, or molybdenum(VI) oxide (Table 1). No reaction is observed with any of the xylenes under the same conditions in the absence of a catalyst (limit of detection 2%). The highest yields were obtained with 1,3-xylene, though none of the reactions has been optimised. However, from the synthetic aspect, an excess of hydrocarbon substrate is desirable for efficient benzoylation: the highest yields of dimethylbenzophenone are obtained when at least a 50% excess of xylene is employed. The results obtained with 1,4-xylene and zinc oxide as catalyst are shown in Table 1. Sodium tungstate is the least effective catalyst of those

² D. E. Pearson and C. A. Buehler, Synthesis, 1972, 533.

³ U.S.P. 2,802,032/1957.

shown, but it is nevertheless considerably more active than the following oxides, which did not catalyse the benzoylation of 1,4-xylene during 10 h at 150 °C: titanium(IV) oxide, vanadium(V) oxide, chromium(III) oxide, manganese(IV) oxide, aluminium(III) oxide, thorium(IV) oxide, copper(II) oxide, zirconium(IV) oxide, tungsten(VI) oxide, and ammonium vanadate. Overall, the yields obtained with active metal oxides are generally higher than those obtained by the traditional Friedel– Crafts synthesis from the appropriate xylene, benzoyl chloride, and an equimolar amount of a Lewis acid. For example, 1,4-xylene and antimony trichloride give 2,5-dimethylbenzophenone in only 69% yield at 180 °C during 6 h.4

The benzoylation of other aromatic substrates in the presence of catalytic amounts of metal oxides was examined with iron(III) oxide as an example. Reactions were carried out at 150 °C for 10 h with 2 mol. equiv. of the substrate and 10 mmol. equiv. of the catalyst. The results obtained are shown in Table 2. Anisole, ethylbenzene, and t-butylbenzene react readily during 10 h

TABLE 2

Preparation of substituted benzophenones from reactions between benzoyl chloride (70 g, 0.5 mol) and substituted benzenes (1.0 mol) catalysed by iron(III) oxide (5 mmol) at 150 °C for 10 h

				B.p. (°C
	Conversion	n	Yield	at 3—4
Substrate	(%) ª	Product *	(g; %) ^ø	mmHg)
PhOMe	100	4-MeO-BP	89.8; 84.7	193—195
		(IV) °		
EtPh	100	4-Ét-BP (V)	87.2; 83.1	173—173
Bu ^t Ph	100	4-Bu ^t -BP (VI)	99.6; 83.7	185—186
PhCO ₂ H	46.7	(Bz) ₂ O (VII) d	43.4; 82.1	191—194
PhCl	41.0	4-Cl-BP (VIII)	35.5; 80.0	162 - 164
PhBr	38.1	4-Br-BP (IX)	39.7; 79.7	174—176
PhI	39.7	4-I-BP (X)	46.5; 76.0	182—184
1,4-Br ₂ C ₆ H ₄	5.2	е		
PhNO ₂	8.1	е		
-				

* BP = benzophenone.

^a Of benzoyl chloride. ^b Based on benzoyl chloride consumed. ^c Same product (90.1 g, 85.0%) obtained also with ammonium molybdate (1.5 mmol) under the same conditions. ^d Identified by i.r. spectroscopy. ^c None isolated.

at 150 °C to give the appropriate 4-substituted benzophenone [compounds (IV)-(VI)] in high yield. However, benzoylation is inhibited when powerful electronegative substituents are present in the substrate; neither benzoic acid nor nitrobenzene reacts to give substituted products, although a significant quantity of benzoic anhydride (VII) is formed in the first case. In contrast, less deactivated aromatic compounds such as bromo-, chloro-, and iodo-benzene all react with benzoyl chloride to give the appropriate 4-halogenobenzophenone, (VIII)-(X). The partial conversion of benzoyl chloride observed under these conditions probably reflects the deactivating influence of the halogeno-substituent. Indeed, the presence of two halogeno-substituents, e.g. in 1,4-dibromobenzene, results in little or no benzoylation.

The activity of ammonium molybdate in aromatic

acylation and sulphonylation reactions was also examined, with 1,3-xylene as substrate. Reactions were again carried out at 150 °C for 10 h with 2 mol. equiv. of substrate and 3 mmol. equiv. of catalyst. The results obtained are shown in Table 3. Chloroacetyl chloride reacts with the xylene under these conditions to give 2-chloro-2',4'-dimethylacetophenone (XI) in moderate yield, but hexanoyl chloride reacts less rapidly, and only a partial conversion into the hexanophenone (XII) occurs. Whereas phenylacetyl chloride reacts with the xylene to give the 2-phenylacetophenone derivative (XIII), along with considerable amounts of phenylacetic acid, trimethylacetyl chloride does not react. Although benzenesulphonyl chloride and its 4-methyl derivative give the appropriate diphenyl sulphone in high yield [(XIV) and (XV)] there is no significant reaction with methanesulphonyl chloride. The presence of either electron-donating or electron-withdrawing substituents in benzoyl chloride appears to have little effect on the benzophenone yield in a reaction for 10 h, although the rates of reaction are almost certainly different. Thus, 3-nitro-, 4-chloro-, 4-methoxy-, and 4-methyl-benzoyl chlorides all give the appropriate 2,4-dimethylbenzophenone in good yield [compounds (XVI)--(XIX)].

DISCUSSION

The failure of oxides such as those of aluminium and titanium, and success of others such as zinc and iron, to catalyse the benzoylations described is puzzling, since all the respective halides are powerful Friedel-Crafts reagents.1 However, whereas most of the oxides employed were commercial samples, iron(III) oxide was freshly prepared by calcining the hydroxide in air at 700 °C for 1 h. A number of the oxides examined, including those of aluminium and titanium, are known to be inert to a variety of reagents, such as strong acids and bases, because of the crystal form produced at the high temperatures at which they are normally prepared. Since the lack of activity observed with these oxides in benzoylations could be a reflection of their inertness, fresh samples of both aluminium and titanium oxides were prepared by calcining the respective hydroxides in air at 700 °C for 1 h. Both oxides, however, again failed to catalyse the benzoylation of 1,4-xylene.

The benzoylations catalysed by iron(III) oxide generally proceed in high yield (Table 2), except in those cases where a strongly deactivating substituent is present in the substrate. These results are not unusual: a similar picture is observed for the more traditional syntheses where equimolar quantities of Lewis acids such as aluminium chloride are employed as catalysts. For example, nitroarenes are unreactive except when an activating group is also present.¹ Aromatic carboxylic acids behave similarly, though the reaction described here produces a high yield of benzoic anhydride.

The acylations and sulphonylations catalysed by

⁴ L. F. King, J. Appl. Chem., 1965, 15, 449.

ammonium molybdate proceed readily when an aromatic nucleus or an electron-withdrawing group such as chloromethyl is attached to the carbonyl or sulphonyl function. Thus, both benzoyl chloride and benzenesulphonyl chloride and their ring-substituted derivatives give high yields of the appropriate products with 1,3xylene (Table 3). Trimethylacetyl chloride, methanesulphonyl chloride, and hexanoyl chloride are much less lesser degree, but zinc oxide shows a considerable induction period before the maximum rate of hydrogen chloride evolution occurs. The efficiency of other iron compounds as catalysts in the benzoylation of 1,4xylene has also been studied (Figure 2). The activity of iron(III) sulphate is slightly greater than that of iron(III) oxide, but both are considerably more active than iron(II) sulphate, iron(III) chloride, metallic iron,

TABLE 3

Preparation of substituted ketones and sulphones from reactions between 1,3-xylene (106 g, 1 mol) and acid chlorides (0.5 mol) catalysed by ammonium molybdate (1.5 mmol) at 150 °C for 10 h

Acid chloride Chloroacetyl Hexanoyl	Product 2-Chloro-2',4'-dimethylacetophenone (XI) 2,4-Dimethylhexanophenone (XII) "	Yield (g; %) 62.5; 68.5 10.1; 33.0	B.p. (*C at 3-4 mmHg) 122126 165175
Phenylacetyl	2,4 -Dimethyl-2-phenylacetophenone (XIII) Phenylacetic acid ^b	46.2; 41.3 17.3; 25.4	101103
Trimethylacetyl	None isolated ^c		
Benzenesulphonyl	Phenyl 2,4-xylyl sulphone (XIV)	106; 86.2	208 - 210
Toluene-4-sulphonyl Methanesulphonyl	4-Tolyl 2,4-xylyl sulphone (XV) None isolated °	110.5; 85.0	222 - 224
Benzovl	2.4-Dimethylbenzophenone	96.5; 92.0	164—166
4-Chlorobenzoyl	4-Chloro-2',4'-dimethylbenzophenone (XVI)	99.4; 81.3	173—177
3-Nitrobenzoyl	2,4-Dimethyl-3'-nitrobenzophenone (XVII)	105.5; 82.6	199—201
4-Toluoyl	2,4,4'-Trimethylbenzophenone (XVIII)	91.8; 81.8	165-170
4-Methoxybenzoyl	2,4-Dimethyl-4'-methoxybenzophenone (XIX)	96.0; 80.0	194—196

 $^{\circ}$ Based on hexanoyl chloride consumed (30%). $^{\circ}$ Identified by n.m.r. spectroscopy. $^{\circ}$ Little reaction: >90% of the reagent unchanged.

reactive with this catalyst; only the last reagent gives a substituted product. The reason for the reduction in chemical reactivity is not clear since it appears to follow

Effect of metal oxides on the rate of hydrogen chloride evolution from reactions between 1,4-xylene (1 mol) and benzoyl chloride (0.5 mol) at 150 °C: \blacktriangle Fe₂CO₃ (5 mmol); \triangle ZnO (10 mmol); \bigcirc (NH₄)₆Mo₇O₂₄,4H₂O (1.45 mmol); \bigcirc SnO (10 mmol); \bigcirc Na₂WO₄ (10 mmol)

the opposite trend to that established for related reactions which utilise equimolar amounts of Lewis acids.¹

An examination of the relative activating power of the reactive metal oxides used for benzoylation of 1,4xylene, by estimating the amount of hydrogen chloride evolved during the reaction, shows that iron(III) oxide is the most effective catalyst studied (Figure 1). The evolution of hydrogen chloride in this case is almost linear with time and 90% of the reaction is complete within 1 h. Ammonium molybdate, tin(II) oxide, and sodium tungstate all catalyse the reaction to a much and potassium hexacyanoferrate(III), which is inactive under these conditions. The lower activity of iron(III) chloride, relative to the oxide and sulphate, may be due to the formation of a weak complex with 1,4-xylene, since the chloride is soluble in the hydrocarbon at 150 °C whereas the other iron compounds are not. Indeed, when the iron atom is fully complexed as in potassium hexacyanoferrate(III), no reaction occurs. Neither iron-(III) oxide nor iron(III) sulphate is apparently converted into the chloride during benzovlation: the rate of

Effect of iron and its compounds on the rate of hydrogen chloride evolution from reactions between 1,4-xylene (1.0 mol) and benzoyl chloride (0.5 mol) at 150 °C: \blacktriangle Fe₂(SO₄)₃ (5 mmol); \triangle FeSO₄,H₂O (10 mmol); \bigcirc FecI₃ (10 mmol); \bigcirc Fe₂O₃ (5 mmol); \bigcirc Fe (10 mg atom)

hydrogen chloride evolution observed in the two first cases is considerably greater at all times than that observed with the metal chloride.

	lit m n	or b. p. (°C) 47-48 5	320 5	36 5	6162 •	330-332		7576 8	8182 8	100101	42 ¹⁰ 62—63 11		35012	87 13	5152 14	44 15	64 18	340 17						
ş	Mnor	<i>b.p.</i> (°C) 47	316	34	61	324		11	42	98	42 62		344	84	49	41	63	336						
ulphone		6, 3')4'															0 1.5				934, 14 1	111	s, 11 01.	286 , 333 29, 2203
nyl s		, e' e' , i 3.0	8.0	8.0	8.0	3.0	3.0	3.0	3.0	3.0				8.0	0.0	0.0	.0 8.	0.	0.0	1 2.75.	m 1	0101	, 1902	1895, 26., 19
iphe	N	2.0	2.0	2.0	2.0	2.0	2.0	w	2.0	2.0				2.0			1.5 8	30	0,	30, and	. Che	Ċ	200	llen, m. Sc
p pu	Ę١	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0				2.0			1.5			0.8, 1.	brakt	1.	nem.	Anna . Che
es, a		^{2',3'} 3	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0				8.0	9.0	9.0		8.0	9.0	H11 8	81. 	, ,	5 -	erg, z
none		8.0 8.0			9.0	8.5	8.0	9.0		8.0	9.0	9.0	9.0	8.5	8.0	8.0	8.0	8.0	8.0	ရငိ	5, 16 bner,	`	KUIS,	kenbe
ophe		8			9.0	8.5	8.0	9.0		8.0										60 (s).	82, 1 4 . Hu	TTom	dou	A. C
s, acet		H-6' 1 7.75	(nn)	(pp)	(DD)	(DD)	(pp)	(pp)	1.75	(pn)	(DD)		7.65	(D) 7.85	7.72	6).2 (1)	8.40 8.40	1.70	(d)	e 8cH2 4.	<i>ler.</i> , 186 and R	с 11 г	9/1930.	and H. and E.
none		H-5′ 7.50	7.45	7.45	7.48	7.50	7.50	7.50	7.50	7.52			7.02	7.50	7.22	1.35	(n) 2.65	7.20	(q) (q) (q)	CH2).	ler, <i>E</i> kopf	- 1	81,81	richt
ophe		1-4' 7.50	7.45	7.45	7.48	7.50	7.50	7.50	7.50	7.52	v	q	2.30	7.50	2.32	(am)	8.10	2.35	(Me) 3.80 (OMe)	30 (t, C	ollsch	1	P. 45	impi Moi
senz		[-3′ I 7.50	7.45	7.45	7.48	7.50	7.50	7.50	7.50	7.52			7.02	7.50	7.22	(U) 7.35	(T)	7.20	6.88 (d)	ud 1.5	S.S. AC	4 7	ч. - Ъ	н С. Н. С.
Ited 1	ifts (8)	$\begin{array}{c} 1.25\\$													CH ³)	12 13	193. 14	12	16					
stitu	ical sh	[-6 Н 7.55	7.45	7.15	$\begin{array}{c} 7.8 \\ 7.7 \\ 7.7 \\ 7.7 \\ 7.7 \\ 7.7 \\ 7.7 \\ 7.7 \\ 7.8 \\ 7.7 \\ 7.8 \\ 8.0 \\ 8.0 \\ 8.0 \\ 8.0 \\ 1.2 \\ 8.0 \\ 8.0 \\ 1.2 \\$.75 (q,										
f sut	Chem	-5 H 7.15	7.05	2.25	$ \begin{array}{c} (0,00)\\ (0,00)\\ (1,00)$							7.18 (d) (1) 7.05 7.00 7.00 7.00 7.00												
tra o		-4 -4 -4 -4	8.30 Me)	7.15	3.80	p q	.35	(and			2.35	2.20	7.22	2.35 Mol	2.28 2.28	8.30 8.30	99	30	Me)	loces.				
spec		E-3 H	1.05	7.15	6.90	2.38 (1)	(-> 	7.62	(s) 1.84	(n)	6.95	32	7.05 2		(s) (2) (2) (2) (2)	(s) 2.15	(s) 202	(s) (s) (s)	resonau				
.m.r.		-2 H	2.30	2.30	7.80	(d)	1.75	6). 22. 19	7.62	6.1	(a) 2.50	2.20	7.22 7.	2.40	2.40	2.35 Mo	2.40	2.38	2.30 Me)	uposed				3484.
u Hı I	l	H 01	010	010	812	10	38		60			\$04	24	346	990	344	355	24	940	superin			453.	9, 42 , 3
, and	_	Other 1		••				6.4	30.6	<u>6</u>	9.4			.0	9.9	4.8	то.			ignifies		1	38,3 38,3	, 190
ghts	lo. (%	0% F						CI, 1	Br, 3	I,41	, CI,1		•	, S, 13	S, 12	t CI, 1	N, 5			alue si	467. 220.	a St	905, 1	Ber.
wei	ပ်ိဳ	7 % F	7 6.7	7 6.7	2 5.7	7 6.7	7 7.6		3 3.3		3.4.8	3 9.6	7 7.5	3 5.7		6 5.4	6 5.1	7 7.2	0 6.7	he ô v	7, 35 , 1882,	4029.	., 10 er., 1	cher, 79.
cular		ي 22.38	85.	85.	79.	85.	85.		59.		74.	82.	85.	68.		73.	70.	85.	80.	after t	, 188' Soc.,]	57	sel, B	terba 30 , 5
mole		210 210	210	210	212	210	238		260			204	224	246	260	244	255	224	240	ackets	hem.	1891, More	I. Bog	V. Lui 897,
rsis,	(%)	Other						, 16.0	r, 30.6	40.8	, 19.2			13.0	12.3	, 14.5	5.4			e of br	ukt. C I. Ch	Ber.,	H pu	and P
analy	Found	6.7 %	6.7	6.7	5.9	6.7	7.6	IJ	3.5 Bı	Ι,	4.1 CI	9.7	7.2	5.9 S,	s,	5.1 CI	5.2 N	7.2	6.7	absenc	<i>I. р</i> и mie.	ith,	odt a	ann a ell, <i>B</i>
ntal :		% C %	85.4	85.3	79.3	86.0	86.1		59.8		74.1	82.0	86.1	67.9		73.9	70.2	85.5	79.7	a The	Elbs, J I. Rer	V. Sm	Villger	čauřm čunck
leme		ula 0	0	o,	°0	o,	o	010	BrO	0	cio CIO	Q	°,	0 . S	0 _s S	C10	NO	õ	°0,		н Н Н Н Н	A.V	- N - N - N	A.F. F.F.
Щ		Form C ₁₅ H ₁₄	C ₁₆ H ₁₄	C ₁₅ H ₁₄	C14H12	C ₁₆ H ₁₄	C17H18	C ₁₃ H ^s (C ₁₃ H ₈ 1	C ₁₈ H ₆ 1	C ₁₀ H ₁₁	C14H20	C ₁ ,H ₁ ,	C14H14	C1.FH14	C16H13	C ₁₆ H ₁₃	C1.H11	C ₁₆ H ₁₁		1.3 Q	ι- α) (1)	91
		Compound (I)	(11)	(111)	(IV)	Ś	(IVI)	(III)	(VIII)	(XI)	(XX) XX)	(IIX)	(IIIX)	(XIV)	(XV)	(XVI)	(XVII)	(XVIII)	(XIX)					

TABLE 4

J.C.S. Perkin II

604

General purpose reagents were used throughout. Fresh samples of iron(III) oxide, aluminium(III) oxide, and titanium(IV) oxide were prepared by calcining the respective hydroxide at 700 °C for 1 h in air. I.r. spectra (KBr discs) and ¹H n.m.r. spectra (90 MHz) were recorded with Perkin-Elmer 457 and R32 instruments, respectively. Molecular weights were determined by mass spectrometry with an A.E.I. MS9 instrument; figures for compounds containing chlorine or bromine are calculated for the ³⁵Cl or ⁷⁹Br isotope.

General Acylation and Sulphonylation Procedure.—The substrate, reagent, and catalyst were mixed at room temperature, rapidly heated to 150 °C with agitation, and held at this temperature for 10 h. The product was cooled to 20 °C, the excess of substrate and unchanged reagent (if any) were removed by vacuum distillation (3—4 mmHg), and the relative amounts of each present in the distillate were estimated by ¹H n.m.r. analysis. The product was isolated in all cases by vacuum distillation (3—4 mmHg) of the remaining liquid. Pure samples for elemental analysis, mass spectrometry, and ¹H n.m.r. spectroscopy, were prepared by redistillation of liquid products over sodium carbonate, or recrystallisation of solid products from ethanol. Structures were assigned on the basis of ¹H n.m.r. spectra. The results are shown in Table 4.

The amount of hydrogen chloride evolved from reactions between 1,4-xylene (106 g, 1 mol) and benzoyl chloride (70 g, 0.5 mol) in the presence of metal oxides or iron or its compounds was estimated by passing a current of air through the reactor into a receiver containing water (600 ml) and a known amount of standard aqueous sodium hydroxide, with phenolphthalein as indicator. In view of the vigorous nature of many of the reactions, the procedure consisted of adding the reagent (at 25 °C) to the mixture of the hydrocarbon and catalyst (at 150 °C) over the shortest possible time (usually 1–2 min) and rapidly heating the resulting mixture to 150 °C.

[6/1315 Received, 6th July, 1976]